Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Anal Methods ; 15(47): 6541-6550, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37990986

ABSTRACT

This work describes the development of a membraneless, self-powered immunosensor exploiting a photoelectrochemical system based on two photoelectrodes for cardiac troponin I (cTn). An electrode based on CaBi2Ta2O9 combined with bismuth oxyiodides (BiOI/Bi4O5I2/Bi5O7I) was modified with the cTnI antibody (anti-cTnI) and applied in a photoelectrochemical cell as a photoanode. To perform the cTnI detection exploiting a self-powered photoelectrochemical setup, the immunosensor (anti-cTnI/BiOI/Bi4O5I2/Bi5O7I/CaBi2Ta2O9/FTO) was coupled to a photoelectrochemical cell containing a photocathode based on CuBi2O4 (CBO/FTO) for zero-biased photoelectrochemical immunosensing of cardiac troponin I (cTnI) biomarker. For comparison purposes, the photoanode was applied for cTnI detection in a three-electrode electrochemical cell. The spectroscopic, structural, and morphological characteristics of the photoelectrochemical (PEC) materials were evaluated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) measurements were performed in the presence and absence of light to investigate the effects of photons on the charge transfer resistance of the photoanode. The influence of the cTnI biomarker on the photoelectrochemical response of the anti-cTnI antibody-modified photoelectrochemical platform (anti-cTnI/BiOI/Bi4O5I2/Bi5O7I/CaBi2Ta2O9/FTO) was evaluated by measuring the photocurrent of the system. The immunosensor presented a linear response ranging from 1 pg mL-1 to 200 ng mL-1 as well as a mean recovery percentage between 95.7% and 108.0% in real human serum samples for the cTnI biomarker.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Humans , Electrochemical Techniques/methods , Immunoassay/methods , Bismuth/chemistry , Biosensing Techniques/methods , Troponin I , Biomarkers , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
2.
Biosensors (Basel) ; 13(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36979591

ABSTRACT

A sensitive and selective label-free photoelectrochemical (PEC) immunosensor was designed for the detection of cardiac troponin I (cTnI). The platform was based on a fluorine-doped tin oxide (FTO)-coated glass photoelectrode modified with bismuth vanadate (BiVO4) and sensitized by an electrodeposited bismuth sulfide (Bi2S3) film. The PEC response of the Bi2S3/BiVO4/FTO platform for the ascorbic acid (AA) donor molecule was approximately 1.6-fold higher than the response observed in the absence of Bi2S3. The cTnI antibodies (anti-cTnI) were immobilized on the Bi2S3/BiVO4/FTO platform surface to produce the anti-cTnI/Bi2S3/BiVO4/FTO immunosensor, which was incubated in cTnI solution to inhibit the AA photocurrent. The photocurrent obtained by the proposed immunosensor presented a linear relationship with the logarithm of the cTnI concentration, ranging from 1 pg mL-1 to 1000 ng mL-1. The immunosensor was successfully employed in artificial blood plasma samples for the detection of cTnI, with recovery values ranging from 98.0% to 98.5%.


Subject(s)
Biosensing Techniques , Myocardial Infarction , Humans , Limit of Detection , Electrochemical Techniques , Troponin I , Fluorine , Immunoassay , Electrodes , Myocardial Infarction/diagnosis , Biomarkers
3.
Anal Methods ; 15(6): 807-817, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36722862

ABSTRACT

2,3-Dihydroxyphenol (DHP) is a phenolic compound that has been used as an additive in biodiesel to avoid the auto-oxidation of biofuels and also in the production of cosmetic products. However, this substance can be released into the environment during its manufacture, transport, disposal and industrial use and can be harmful to health due to its toxicity, and hence, monitoring its presence in different samples is very important. Therefore, this work describes an electroanalytical study of DHP using different carbon-based pastes prepared to evaluate which one would be more promising to be used as an electrochemical platform for DHP quantification. The materials studied (graphite, carbon black and carbon nanotubes) in this work were characterized by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and the Boehm method. Voltammetric studies showed that pure carbon black presented a higher current density for detecting DHP than the other materials tested (graphite, carbon black + graphite, carbon nanotubes, carbon nanotubes + graphite). In studying the medium's pH, the highest currents occurred in acid media and acetate buffer solutions. After optimizing the experimental parameters, it was possible to obtain a wide range of linear responses from 0.1 to 10 000 µmol L-1 for DHP and a good limit of detection (LOD) of 0.03 µmol L-1. The selectivity of the electrode was tested for different species that may be present in samples containing DHP. Finally, the electrode was applied to determine DHP in natural water and biodiesel samples, showing recovery values between 98 and 102%, indicating good accuracy.


Subject(s)
Graphite , Nanotubes, Carbon , Biofuels , Water , Nanotubes, Carbon/chemistry , Graphite/chemistry , Soot
4.
Biosens Bioelectron ; 143: 111625, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31476595

ABSTRACT

The first serum diagnosis of leprosy based on the detection of antibodies of patients using a recombinant mimetic peptide (PGL1M3R) as recognition element and exploiting a photoelectrochemical sensor is presented in this work. The photoeletrochemical platform consists of cadmium sulphide and nickel hydroxide electrodeposited on fluorine-doped tin oxide coated glass slide (CdS/Ni(OH)2/FTO). The optical band gap and flat band potential of the photoelectroactive materials were evaluated by UV-Vis spectroscopy and electrochemical impedance spectroscopy. The spatial photoelectrochemical response of the platform was evaluated by Scanning Electrochemical Microscopy and the morphology of the films was investigated by Scanning Electron Microscopy (SEM). The photoelectrochemical response of the CdS/Ni(OH)2/FTO platform was optimized by evaluating the effects of the kind, concentration, and pH of the buffer. Furthermore, the applied potential to the CdS/Ni(OH)2/FTO platform was also investigated. The CdS/Ni(OH)2/FTO photoelectrochemical platform was modified with a synthetic peptide by using glutaraldehyde as cross-linking reagent and chitosan (CS) for the covalent coupling of the peptide to the photoelectrochemical platform (PGL1M3R/CdS/Ni(OH)2/FTO). The photoelectrochemical immunosensor is able to distinguishing between positive and negative leprosy human sera samples diluted from 1:640 up to 1:10240. Furthermore, to test the specificity of the sensor, samples from tuberculosis and leishmaniasis patients were analyzed using the proposed photoelectrochemical immunosensor.


Subject(s)
Antigens, Bacterial/isolation & purification , Biosensing Techniques , Leprosy/diagnosis , Mycobacterium leprae/isolation & purification , Biomimetics , Humans , Leprosy/microbiology , Mycobacterium leprae/pathogenicity , Recombinant Proteins/chemistry
5.
Mikrochim Acta ; 185(12): 567, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30498875

ABSTRACT

The published version of this article, unfortunately, contains an error in that Fig. 2 shows the same study as Fig. 3. The correct Fig. 2 is shown below.

6.
Mikrochim Acta ; 185(11): 521, 2018 10 27.
Article in English | MEDLINE | ID: mdl-30368609

ABSTRACT

The article describes a method for determination of tannic acid in extracts of medicinal plants. Tannic acid (TA) is an antioxidant and has anticancer and antimicrobial properties. Titanium dioxide nanoparticles (TiO2) were co-sensitized with 5-methylphenazinium methosulfate (PMS) and carboxy-functionalized cadmium telluride quantum dots (CdTe QDs), and immobilized on a fluorine-doped tin oxide electrode. The surface morphology and electrochemical properties of the modified electrode were investigated by scanning electron microscopy and amperometry, respectively. A composite consisting of TiO2, PMS and CdTe QDs in a nafion film has a response to TA under LED light higher than that observed for each separate component. Under optimized experimental conditions and at an applied voltage of +0.4 V vs Ag/AgCl, the photoelectrochemical sensor has a linear response in the 0.2 to 200 µmol L-1 TA concentration range and a detection limit of 60 nmol L-1. The sensor was successfully applied to the determination of TA in spiked extracts from three medicinal plants, with recovery values between 98.3 and 103.9 %. Graphical abstract Schematic diagram for photoelectrochemical detection of tannic acid based on a fluorine doped tin oxide electrode modified with titanium oxide, 5-methylphenazinium methosulfate and carboxy-functionalized cadmium telluride quantum dots.

7.
Biosensors (Basel) ; 8(1)2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29438301

ABSTRACT

A renewable, disposable, low cost, and sensitive sensor for the detection of organophosphorus pesticides was constructed by immobilizing the acetylcholinesterase enzyme (AChE), via glutaraldehyde, on magnetic iron nanoparticles (Fe3O4) previously synthesized and functionalized with chitosan (CS). The sensor was denoted AChE/CS/Fe3O4. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy. Acetylthiocholine (ATCh) was incubated with AChE/CS/Fe3O4 and attached to a screen-printed electrode using a magnet. The oxidation of thiocholine (from ATCh hydrolysis) was monitored at an applied potential of +0.5 V vs. Ag/AgCl(KClsat) in 0.1 mol L-1 phosphate buffer solution (pH 7.5) as the supporting electrolyte. A mixture of the pesticide malathion and ATCh was investigated using the same procedure, and the results were compared and expressed as inhibition percentages. For determination of malathion, the proposed sensor presented a linear response in the range from 0.5 to 20 nmol L-1 (R = 0.9942). The limits of detection (LOD) and quantification (LOQ) were 0.3 and 0.8 nmol L-1, respectively. Real samples were also investigated, with recovery values of 96.0% and 108.3% obtained for tomato and pond water samples, respectively. The proposed sensor is a feasible option for malathion detection, offering a linear response, good sensitivity, and a low detection limit.


Subject(s)
Acetylcholinesterase/chemistry , Biosensing Techniques/methods , Chitosan/chemistry , Insecticides/analysis , Magnetite Nanoparticles/chemistry , Malathion/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Enzymes, Immobilized/chemistry , Equipment Design , Food Analysis/methods , Food, Preserved/analysis , Fresh Water/analysis , Solanum lycopersicum/chemistry , Magnetite Nanoparticles/ultrastructure , Models, Molecular
8.
Food Chem ; 227: 16-21, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28274417

ABSTRACT

A novel photoelectrochemical sensor was developed for determination of tert-butyl-hydroquinone (TBHQ) in edible vegetable oils, based on CdSe/ZnS core-shell quantum dots sensitized with lithium tetracyanoethylenide (LiTCNE). The CdSe/ZnS/LiTCNE photoelectrochemical sensor presented a TBHQ photocurrent about 13-fold higher and a charge transfer resistance 62-fold lower than observed for a CdSe/ZnS sensor. The photoelectrochemical sensor showed selectivity to TBHQ, with a high photocurrent for this antioxidant compared to the photocurrent responses for other phenolic antioxidants. The CdSe/ZnS/LiTCNE photoelectrochemical sensor presented a linear range from 0.6 to 250µmolL-1, sensitivity of 0.012µALµmol-1, and a limit of detection of 0.21µmolL-1 for TBHQ, under optimized experimental conditions. The sensor was successfully employed in the analysis of edible oil samples, with recoveries of between 98.25% and 99.83% achieved.


Subject(s)
Antioxidants/chemistry , Food Additives/chemistry , Food Analysis/methods , Hydroquinones/chemistry , Plant Oils/chemistry , Food Analysis/instrumentation , Lithium/chemistry , Quantum Dots/chemistry
9.
Anal Sci ; 31(1): 29-35, 2015.
Article in English | MEDLINE | ID: mdl-25792271

ABSTRACT

This work describes the highly sensitive detection of organophosphorus pesticides employing the cobalt(II) 4,4,4,4-tetrasulfo-phthalocyanine (CoTSPc) macrocycle complex, carbon nanotubes (CNT), and 1-methyl-3-octylimidazolium tetrafluoroborate (OMIM[BF4]). The technique is based on enzyme acetylcholinesterase (AChE) inhibition. The composite was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and amperometry. The AChE was immobilized on the composite electrode surface by cross-linking with glutaraldehyde and chitosan. The synergistic action of the CoTSPc/CNT/OMIM[BF4] composite showed excellent electrocatalytic activity, with a low applied potential for the amperometric detection of thiocholine (TCh) at 0.0 V vs. Ag/AgCl. The calculated catalytic rate constant, k(cat), was 3.67 × 10(3) mol(-1) L s(-1). Under the optimum conditions, the inhibition rates of these pesticides were proportional to their concentrations in the ranges of 1.0 pmol L(-1) to 1.0 nmol L(-1) (fenitrothion), 2.0 pmol L(-1) to 8.0 nmol L(-1) (dichlorvos), and 16 pmol L(-1) to 5.0 nmol L(-1) (malathion).


Subject(s)
Biosensing Techniques/methods , Enzymes, Immobilized/chemistry , Imidazoles/chemistry , Indoles/chemistry , Nanotubes, Carbon/chemistry , Organometallic Compounds/chemistry , Organophosphorus Compounds/chemistry , Pesticides/analysis , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Electrochemistry , Electrodes , Enzymes, Immobilized/metabolism , Pesticides/chemistry
10.
Bioelectrochemistry ; 86: 22-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22284852

ABSTRACT

L-Dopa is the immediate precursor of the neurotransmitter dopamine, being the most widely prescribed drug in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-Dopa in pharmaceutical formulations using a basal plane pyrolytic graphite (BPPG) electrode modified with chloro(pyridine)bis(dimethylglyoximato)cobalt(III) (Co(DMG)(2)ClPy) absorbed in a multi-walled carbon nanotube (MWCNT). Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy were used to characterize the materials. The electrocatalytical oxidation of L-Dopa using the Co(DMG)(2)ClPy/MWCNT/BPPG electrode was investigated by cyclic voltammetry and square wave voltammetry. The parameters that influence the electrode response (the amount of Co(DMG)(2)ClPy and of MWCNT, buffer solution, buffer concentration, buffer pH, frequency and potential pulse amplitude) were investigated. Voltammetric peak currents showed a linear response for L-Dopa concentration in the range of 3 to 100 µM, with a sensitivity of 4.43 µAcm(-2)/µM and a detection limit of 0.86 µM. The related standard deviation for 10 determinations of 50 µM L-Dopa was 1.6%. The results obtained for L-Dopa determination in pharmaceutical formulations (tablets) were in agreement with the compared official method. The sensor was successfully applied for L-Dopa selective determination in pharmaceutical formulations.


Subject(s)
Electrochemistry/methods , Electrodes , Levodopa/analysis , Nanotubes, Carbon/chemistry , Buffers , Cobalt , Graphite/chemistry , Hydrogen-Ion Concentration , Levodopa/chemistry , Oxidation-Reduction , Sensitivity and Specificity , Tablets/analysis
11.
Anal Bioanal Chem ; 387(5): 1891-7, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17200855

ABSTRACT

The determination of reduced glutathione (GSH) in human erythrocytes using a simple, fast and sensitive method employing a glassy carbon electrode modified with cobalt tetrasulfonated phthalocyanine (CoTSPc) immobilized in poly(L: -lysine) (PLL) film was investigated. This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of GSH, decreasing substantially the anodic overpotentials for 0.2 V versus Ag/AgCl. The modified electrode presented better performance in 0.1 mol l(-1) piperazine-N,N'-bis(2-ethanesulfonic acid) buffer at pH 7.4. The other experimental parameters, such as the concentration of CoTSPc and PLL in the membrane preparation, pH, type of buffer solution and applied potential, were optimized. Under optimized operational conditions, a linear response from 50 to 2,160 nmol l(-1) was obtained with a high sensitivity of 1.5 nA l nmol(-1) cm(-2). The detection limit for GSH determination was 15 nmol l(-1). The proposed sensor presented good repeatability, evaluated in terms of the relative standard deviation (1.5%) for n = 10. The modified electrode was applied for determination of GSH in erythrocyte samples and the results were in agreement with those obtained by a comparative method described in the literature The average recovery for these fortified samples was 100 +/- 1)%. Applying a paired Student's-t test to compare these methods, we could observe that, at the 95% confidence level, there was no statistical difference between the reference and the proposed methods.


Subject(s)
Biosensing Techniques/methods , Blood Chemical Analysis/methods , Electrochemistry/methods , Erythrocytes/metabolism , Glutathione/analysis , Adult , Biosensing Techniques/instrumentation , Electrochemistry/instrumentation , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
12.
J Pharm Biomed Anal ; 42(2): 184-91, 2006 Sep 18.
Article in English | MEDLINE | ID: mdl-16730154

ABSTRACT

The present work describes the development of a simple and efficient method for the amperometric determination of cysteine (CySH) in wild medium at an applied potential of 0.150 V versus Ag/AgCl. In this sense, the electrocatalytic oxidation of cysteine (CySH) was carried out on a glassy carbon electrode modified with cobalt tetrasulphonated phthalocyanine (CoTSPc) and poly-L-lysine (PLL) film. The immobilization of CoTSPc in PLL film was performed by a simple evaporation of the solvent. The CoTSPc/PLL film, formed on the GC electrode showed an electrocatalytic activity to the CySH oxidation. The sensor presented its best performance in 0.1 mol l(-1) Pipes at pH 7.5. Under optimized operational conditions, the sensor provided a wide linear response range for CySH from 0.50 up to 216.0 micromol l(-1) with a sensitivity and detection limit of 157 nA cm(-2) l micromol(-1) and 150 nmol l(-1), respectively. The proposed sensor presented higher sensitivity when compared to the other modified electrodes described in the literature and showed a stable response for at least 200 successive determinations. The repeatability of the measurements with the same sensor and different sensors, evaluated in term of relative standard deviation, were 4.1 and 5.2%, respectively, for n=10. The developed sensor was applied for the CySH determination in food supplement samples and the results were statistically the same to those obtained by a comparative method described in the literature at a confidence level of 95%.


Subject(s)
Cysteine/analysis , Electrochemistry/methods , Indoles/chemistry , Organometallic Compounds/chemistry , Polylysine/chemistry , Carbon , Electrochemistry/instrumentation , Electrodes , Reproducibility of Results , Sensitivity and Specificity
13.
Talanta ; 64(4): 935-42, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-18969693

ABSTRACT

The reduction of 4-nitrophenol (4-NP) has been carried out on a modified glassy carbon electrode using cyclic and differential pulse voltammetry (DPV). The sensor was prepared by modifying the electrode with lithium tetracyanoethylenide (LiTCNE) and poly-l-lysine (PLL) film. With this modified electrode 4-NP was reduced at -0.7V versus SCE. The sensor presented better performance in 0.1moll(-1) acetate buffer at pH4.0. The other experimental parameters, such as concentration of LiTCNE and PLL, pulse amplitude and scan rate were optimized. Under optimized operational conditions, a linear response range from 27 up to 23200nmoll(-1) was obtained with a sensitivity of 3.057nAlnmol(-1)cm(-2). The detection limit for 4-NP determination was 7.5nmoll(-1). The proposed sensor presented good repeatability, evaluated in term of relative standard deviation (R.S.D.=4.4%) for n=10 and was applied for 4-NP determination in water samples. The average recovery for these samples was 103.0 (+/- 0.7)%.

14.
Analyst ; 128(3): 255-9, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12705384

ABSTRACT

The use of iron(III) tetra-(N-methyl-4-pyridyl) porphyrin (FeIIIT4MpyP) and histidine (His) in the construction of an amperometric sensor for phenolic compound determinations is reported, based on horseradish peroxidase (HRP) chemistry. The sensor was prepared by modifying a glassy carbon electrode with Nafion membrane doped with FeIIIT4MpyP and His, in a mass ratio of 1:2. The sensor presented its best performance at 50 mV vs. SCE in 0.1 mol l(-1) succinate buffer (pH = 4.0) containing 125 micromol l(-1) H2O2. Under optimized operational conditions, a linear response range from 0.6 to 6.0 micromol l(-1) was obtained with a sensitivity of 61 nA cm(-2) micromol l(-1). The detection limit for catechol determination was 0.35 micromol l(-1). The response time was less than 0.5 s. The proposed sensor presented stable responses for 100 successive determinations, while satisfactory responses were observed even after 200 measurements. The repeatability, evaluated in terms of relative standard deviation, was 4% for n = 7. The signal responses for other phenolic compounds, including those of environmental and clinical interest, were also investigated.


Subject(s)
Biomimetic Materials , Metalloporphyrins/chemistry , Phenols/analysis , Biosensing Techniques , Dopamine/analysis , Electrochemistry/instrumentation , Electrochemistry/methods , Horseradish Peroxidase
SELECTION OF CITATIONS
SEARCH DETAIL
...